

    
      
          
            
  
Welcome to HEMDAG’s documentation!

HEMDAG package:



	implements several Hierarchical Ensemble Methods (HEMs) for Directed Acyclic Graphs (DAGs);


	reconciles flat predictions with the topology of the ontology;


	can enhance the predictions of virtually any flat learning methods by taking into account the hierarchical relationships between ontology classes;


	guarantees biologically meaningful predictions that always obey the true-path-rule, the biological and logical rule that governs the internal coherence of biomedical ontologies;


	is specifically designed for exploiting the hierarchical relationships of DAG-structured taxonomies, such as the Human Phenotype Ontology (HPO) or the Gene Ontology (GO), but can be safely applied to tree-structured taxonomies as well (e.g. FunCat), since trees are DAGs;


	scales nicely both in terms of the complexity of the taxonomy and in the cardinality of the examples;


	provides several utility functions to process and analyze graphs;


	provides several performance metrics to evaluate HEMs algorithms.























          

      

      

    

  

    
      
          
            
  
Quickstart

This short HowTo guides you from downloading HEMDAG library, load it into your R environment and make first computations.


Installation

Please go to the Installation section and install HEMDAG by using one of the ways shown.




Load HEMDAG Library

Start R in your console using

$ R





then load the library by using

> library(HEMDAG)








First Classification – for the Impatient

HEMDAG encompasses in total 23 hierarchical ensemble methods. Below we show the simple call to all the hierarchical ensemble algorithms included in HEMDAG, bu using the pre-built datasets available in the HEMDAG for making predictions. For more details about datasets and methods have a look to section Tutorial.


	Loading the pre-built dataset of HEMDAG




# load the DAG g
> data(graph);

# load the scores matrix S
> data(scores);

# load the annotation matrix L
> data(labels);

# compute the root node
> root <- root.node(g);






	HTD-DAG: Hierarchical Top-Down for DAG




> S.htd  <- htd(S, g, root);






	GPAV: Generalized Pool-Adjacent-Violators




> S.gpav <- gpav.over.examples(S, g, W=NULL);






	TPR-DAG (True Path Rule for DAG) and all its 18 ensemble variants




> S.tprTF         <- tpr.dag(S, g, root, positive="children", bottomup="threshold.free", topdown="htd");
> S.tprT          <- tpr.dag(S, g, root, positive="children", bottomup="threshold", topdown="htd", t=0.5);
> S.tprW          <- tpr.dag(S, g, root, positive="children", bottomup="weighted.threshold.free", topdown="htd", w=0.5);
> S.tprWT         <- tpr.dag(S, g, root, positive="children", bottomup="weighted.threshold", topdown="htd", t=0.5, w=0.5);

> S.descensTF     <- tpr.dag(S, g, root, positive="descendants", bottomup="threshold.free", topdown="htd");
> S.descensT      <- tpr.dag(S, g, root, positive="descendants", bottomup="threshold", topdown="htd", t=0.5);
> S.descensW      <- tpr.dag(S, g, root, positive="descendants", bottomup="weighted.threshold.free", topdown="htd", w=0.5);
> S.descensWT     <- tpr.dag(S, g, root, positive="descendants", bottomup="weighted.threshold", topdown="htd", t=0.5, w=05);
> S.descensTAU    <- tpr.dag(S, g, root, positive="descendants", bottomup="tau", topdown="htd", t=0.5);

> S.isotprTF      <- tpr.dag(S, g, root, positive="children", bottomup="threshold.free", topdown="gpav");
> S.isotprT       <- tpr.dag(S, g, root, positive="children", bottomup="threshold", topdown="gpav", t=0.5);
> S.isotprW       <- tpr.dag(S, g, root, positive="children", bottomup="weighted.threshold.free", topdown="gpav", w=0.5);
> S.isotprWT      <- tpr.dag(S, g, root, positive="children", bottomup="weighted.threshold", topdown="gpav", t=0.5, w=0.5);

> S.isodescensTF  <- tpr.dag(S, g, root, positive="descendants", bottomup="threshold.free", topdown="gpav");
> S.isodescensT   <- tpr.dag(S, g, root, positive="descendants", bottomup="threshold", topdown="gpav", t=0.5);
> S.isodescensW   <- tpr.dag(S, g, root, positive="descendants", bottomup="weighted.threshold.free", topdown="gpav", w=0.5);
> S.isodescensWT  <- tpr.dag(S, g, root, positive="descendants", bottomup="weighted.threshold", topdown="gpav", t=0.5, w=0.5);
> S.isodescensTAU <- tpr.dag(S, g, root, positive="descendants", bottomup="tau", topdown="gpav", t=0.5);






	Obozisnki heuristic methods




> S.max <- obozinski.max(S,g,root);
> S.and <- obozinski.and(S,g,root);
> S.or  <- obozinski.or(S,g,root);











          

      

      

    

  

    
      
          
            
  
Installation

HEMDAG is available on CRAN, through Bioconda and from source code. You can use one of the following ways for installing HEMDAG.


Installation via Conda

This is the recommended way to install HEMDAG for normal users because it will enable you to switch software versions easily. In addition R with all needed dependencies will be installed.

First, you have to install the Miniconda Python3 distribution. See here [https://docs.conda.io/en/latest/miniconda.html] for installation instructions. Make sure to:



	install the Python3 version of Miniconda.


	answer yes to the question whether conda shall be put into your PATH.







Then, you can install HEMDAG with

$ conda install -c bioconda -c conda-forge r-hemdag





from the Bioconda [https://bioconda.github.io] channel.




Global Installation

You can directly install the library via R by typing in your terminal:

$ R -e 'install.packages("HEMDAG", repos="http://cran.us.r-project.org")'





Alternatively, you can install the HEMDAG library by typing in the R environment:

install.packages("HEMDAG");





Another possibility to install the development version of HEMDAG is by using the devtools package (link [https://CRAN.R-project.org/package=devtools]):

library(devtools);
install_github("marconotaro/hemdag");








Dependencies

To install or build HEMDAG the following dependencies are required:



	R (≥ 2.10)


	R dependencies



	graph (bioconductor)


	rbgl (bioconductor)


	precrec


	preprocessCore  (bioconductor)


	plyr


	foreach


	doParallel















Note

CRAN does not automatically install Bioconductor packages. To install them:

if(!requireNamespace("BiocManager", quietly=TRUE))
    install.packages("BiocManager")

BiocManager::install("graph")
BiocManager::install("rbgl")
BiocManager::install("preprocessCore")










Installing from Source

Here we describe how to build HEMDAG from scratch.


Package from CRAN

On a Linux environment, download the package source from the CRAN repo [https://CRAN.R-project.org/package=HEMDAG] and save it (for instance) in the folder pippo. Then type:


R CMD INSTALL pippo/HEMDAG_<pkg-version-number>.tar.gz









Note

Replace <pkg-version-number> with the version number of the downloaded HEMDAG package.






Direct Git Checkout


Note

You only need to install from source if you want to develop HEMDAG yourself.



Below, we will download the HEMDAG sources and build them in ~/hemdag:

~ $ cd ~
~ $ git clone https://github.com/marconotaro/hemdag.git








Building

You can build HEMDAG by using:

R CMD build hemdag





This will generate the file HEMDAG_<package-version-number>.tar.gz and just install the package via:

R CMD INSTALL HEMDAG_<package-version-number>.tar.gz













          

      

      

    

  

    
      
          
            
  
Usage of HEMDAG

For a detailed description of the functions available in the HEMDAG library please go to the CRAN page [https://CRAN.R-project.org/package=HEMDAG] and have a look to the reference manual [https://raw.githubusercontent.com/marconotaro/hemdag/master/inst/HEMDAG_2.7.4.pdf].





          

      

      

    

  

    
      
          
            
  
Tutorial

In this tutorial we show a step-by-step application of HEMDAG to the hierarchical prediction of associations between human gene and abnormal phenotype. To this end we will use the small pre-built dataset available in the HEMDAG library. However, all the hierarchical ensemble methods encompassed in HEMDAG library can be run by using:



	any ontology listed in OBO foundry (link [http://www.obofoundry.org]);


	any flat score matrix, achieved by using any flat classifier ranging from linear, to probabilistic methods, to neural networks, to gradient boosting and many others;


	any annotation matrix.







Of course, the number of terms among the graph, the flat score matrix and the annotation matrix must match.


Note

To run the experiments shown in this page, make sure you have installed the following requirements:



	HEMDAG >= 2.7.4


	R >= 3.4.4


	Ubuntu >= 16.04










Load the HEMDAG Library

To load the HEMDAG library, open the R environment and type:

library(HEMDAG);








Load the Flat Scores Matrix

In their more general form, the hierarchical ensemble methods adopt a two-step learning strategy:



	the first step consists in the flat learning of the ontology terms;


	the second step reconciles the flat predictions by considering the topology of the underlying ontology.







Consequently, the first ingredient that we need in a hierarchical ensemble classification is the flat score matrix. For the sake of simplicity, in the examples shown below we use the pre-built dataset available in the HEMDAG library. To load the flat score matrix, type in the the R environment:

data(scores);





With the above command we loaded the flat score matrix S, that is a named 100 X 23 matrix. Rows correspond to genes (Entrez GeneID) and columns to HPO terms/classes. The scores represent the likelihood that a given gene belongs to a given class: the higher the value, the higher the likelihood that a gene belongs to a given class. This flat score matrix was obtained by running the RANKS package (link [https://cran.rstudio.com/web/packages/RANKS/]).


Normalization

Since RANKS returns a score and not a probability, we must normalize the scores of the matrix S to make the flat scores comparable with the hierarchical ones. In case the flat classifier returns directly a probability there is no needed to normalize the flat score matrix, since the flat scores can be directly compared with the hierarchical ones.

HEMDAG allows to normalize the flat scores according to two different procedures:


	maxnorm: Normalization in the sense of the maximum: the score of each class is normalized by dividing the score values for the maximum score of that class:




S.maxnorm <- scores.normalization(norm.type="maxnorm", S);






	qnorm: Quantile normalization: quantile normalization of the preprocessCore package is used:




S.qnorm <- scores.normalization(norm.type="qnorm", S);





Be sure to install the preprocessCore package before running the above command. Yo can install it by conda (conda install -c bioconda bioconductor-preprocesscore) or by Bioconductor (link [https://bioconductor.org/packages/release/bioc/html/preprocessCore.html])


Note

For the sake of simplicity, in all the examples shown in section Hierarchical Ensemble Methods, the input flat score matrix was normalized according to the maxnorm normalization:

S.norm <- scores.normalization(norm.type="maxnorm", S);












Load the Graph

In order to know how the hierarchical structure of the HPO terms, we need to load the graph:

data(graph);





With the above command we loaded the graph g, an object of class graphNEL. The graph g has 23 nodes and 30 edges and represents the ancestors view of the HPO term Camptodactyly of finger (HP:0100490 [https://hpo.jax.org/app/browse/term/HP:0100490]). Nodes of the graph g correspond to terms of the flat score matrix S.


Plot the Graph (optional)


Note

To plot the graph you need to install before the Rgraphviz package. Yo can install this library for example by conda (conda install -c bioconda bioconductor-rgraphviz) or by Bioconductor (link [https://www.bioconductor.org/packages/release/bioc/html/Rgraphviz.html]).



If you want to visualize the ancestors view of the term HP:0100490, just type:

library(Rgraphviz);
plot(g);






[image: The DAG of graph g]





Utility Functions for Graphs (optional)

HEMDAG includes 33 utility functions (listed below) to process and analyze graphs as well as I/O functions to import a graph as object of class graphNEL or to export a graph as object of class graphNEL in a plain text file (in the classical tupla format). For more details on these functions, refer to the reference manual [https://raw.githubusercontent.com/marconotaro/hemdag/master/inst/HEMDAG_2.7.4.pdf].

build.ancestors                         build.parents                              constraints.matrix
build.ancestors.bottom.up               build.parents.bottom.up                    distances.from.leaves
build.ancestors.per.level               build.parents.top.down                     find.leaves
build.children                          build.parents.topological.sorting          graph.levels
build.children.bottom.up                build.scores.matrix.from.list              lexicographical.topological.sort
build.children.top.down                 build.scores.matrix.from.tupla             read.graph
build.consistent.graph                  build.subgraph                             read.undirected.graph
build.descendants                       check.dag.integrity                        root.node
build.descendants.bottom.up             check.hierarchy                            tupla.matrix
build.descendants.per.level             check.hierarchy.single.sample              weighted.adjacency.matrix
build.edges.from.hpo.obo                compute.flipped.graph                      write.graph










Hierarchical Ensemble Methods

First of all, we need to find the root node (i.e. node that is at the top-level of the hierarchy) of the HPO graph g. To do that just type:

root <- root.node(g);





in this way we store in the variable root the root node of the graph g.

Now, we are ready to run any ensemble algorithms implemented in the HEMDAG package.


HTD-DAG: Hierarchical Top Down for DAG

The HTD-DAG algorithm modifies the flat scores according to the hierarchy of a DAG \(G\) through a unique run across the nodes of the graph. For a given example \(x\), the flat predictions \(f(x) = \hat{y}\) are hierarchically corrected to \(\bar{y}\), by per-level visiting the nodes of the DAG from top to bottom according to the following simple rule:


\[\begin{split}\bar{y}_i := \left\{
   \begin{array}{lll}
     \hat{y}_i  & {\rm if} \quad i \in root(G) \\
     \min_{j \in par(i)} \bar{y}_j & {\rm if} \quad \min_{j \in par(i)} \bar{y}_j < \hat{y}_i \\
     \hat{y}_i & {\rm otherwise}
   \end{array}
  \right.\end{split}\]

The node levels correspond to their maximum path length from the root. To call the HTD-DAG algorithm just type:

S.htd <- htd(S.norm, g, root);





Alternatively, we can call the htd.vanilla function (instead of htd), which it allows to normalize the flat score matrix S (according to maxnorm or qnorm normalization) on the fly:

run a normalization method (between maxnorm and qnrom) on the fly:

S.htd <- htd.vanilla(S, g, norm=TRUE, norm.type="maxnorm");






Note

In htd.vanilla, if norm=FALSE and norm.type=NULL the flat score matrix S is not normalized.






GPAV: Generalized Pool-Adjacent-Violators

Burdakov et al. in [1] proposed an approximate algorithm, named GPAV, to solve the isotonic regression (IR) or monotonic regression (MR) problem in its general case (i.e. partial order of the constraints). GPAV algorithm combines both low computational complexity (estimated to be \(\mathcal{O}(|V|^2\)), where \(V\) is the number of nodes of the graph) and high accuracy. Formally, given a vector of observed values \(\hat{y} \in R^n\), a strictly positive vector of weights \(w \in R^n\) and a dag \(G(V,E)\), GPAV finds the vector of fitted values \(\bar{y} \in \mathbb{R}^n\) that solves the following convex quadratic program:


\[\begin{split}\begin{equation}
  \begin{array}{ll}
      \min\limits_{\bar{y}} \quad \sum\limits_{i \in V} w_i (\bar{y}_i - \hat{y}_i)^2 \\
      s.t. \quad \bar{y}_j \geq \bar{y}_i \quad \forall (i,j) \in E
  \end{array}
\end{equation}\end{split}\]

To call the GPAV algorithm just type:

S.gpav <- gpav.over.examples(S.norm, g, W=NULL);





It is worth noting that there is also a parallel version of the GPAV algorithm:

S.gpav <- gpav.parallel(S.norm, g, W=NULL, ncores=8);





Similarly to HTD-DAG also for GPAV, we can use the function gpav.vanilla (instead of gpav.over.examples or gpav.parallel) to normalize the flat score matrix S (according to maxnorm or qnorm normalization) on the fly:

S.gpav <- gpav.vanilla(S, g, W=NULL, parallel=TRUE, ncores=8, norm=TRUE, norm.type="maxnorm");








TPR-DAG: True Path Rule for DAG

TPR-DAG is a family of algorithms on the basis of the choice of the bottom-up step adopted for the selection of positive children. Indeed, in their more general form, the TPR-DAG algorithms adopt a two step learning strategy:



	in the first step they compute a per-level bottom-up visit from leaves to root to propagate positive predictions across the hierarchy;


	in the second step they compute a per-level top-down visit from root to leaves in order to assure the consistency of the predictions. In other word, the HTD-DAG: Hierarchical Top Down for DAG algorithm is applied.








Note

Levels (both in the first and second step) are defined in terms of the maximum path length from the root node. Please refer to [3] for further details.



The vanilla TPR-DAG adopts a per-level bottom-up traversal of the DAG to modify the flat predictions \(\hat{y}_i\) according to the following formula:


\[\bar{y}_i := \frac{1}{1 + |\phi_i|} (\hat{y}_i + \sum_{j \in \phi_i} \bar{y}_j)\]

where \(\phi_i\) are the positive children of \(i\) (parameter positive="children").

Different strategies to select the positive children \(\phi_i\) can be applied:



	threshold-free strategy (parameter bottom="threshold.free"): the positive nodes are those children that can increment the score of the node \(i\), that is those nodes that achieve a score higher than that of their parents:





\[\phi_i := \{ j \in child(i) | \bar{y}_j > \hat{y}_i \}\]


	threshold strategy (parameter bottom="threshold"): the positive children are selected on the basis of a threshold that can be selected in two different ways:



	a unique threshold \(\bar{t}\) is a priori selected for all nodes to determine the set of positives





\[\phi_i := \{ j \in child(i) | \bar{y}_j > \bar{t} \}, \forall i \in V\]

For instance if the predictions represent probabilities it could be meaningful set \(\bar{t}=0.5\).


	a threshold is selected to maximize some imbalance-aware performance metric \(\mathcal{M}\) estimated on the training data, as for instance the Fmax or the AUPRC. In other words, the threshold is selected to maximize the measure \(\mathcal{M}(j,t)\) on the training data for the term \(j\) with respect to the threshold \(t\). The corresponding set of positives for each \(i \in V\) is:





\[\phi_i := \{ j \in child(i) | \bar{y}_j > t_j^*,  t_j^* = \arg \max_{t} \mathcal{M}(j,t) \}\]




Internal cross-validation is used to select \(t^*_j\) within a set of possible thresholds \(t \in (0,1)\);








The weighted TPR-DAG version (parameter bottom="weighted.threshold.free") can be designed by adding a weight \(w \in [0,1]\) to balance the contribution of the parent node \(i\) and its positive children \(\phi\):


\[\bar{y}_i := w \hat{y}_i + \frac{(1 - w)}{|\phi_i|} \sum_{j \in \phi_i} \bar{y}_j\]

If \(w=1\) no weight is attributed to the children and the TPR-DAG reduces to the HTD-DAG algorithm. If \(w=0\) only the predictors associated to the children nodes vote to predict node \(i\). In the intermediate cases we attribute more importance to the predictor for the node \(i\) or to its children depending on the values of \(w\).

By combining the weighted and the threshold variant, we design the weighted-threshold variant (parameter bottom="weighted.threshold").

All the vanilla TPR-DAG variants use the HTD-DAG algorithm in the top-down step (parameter topdown="htd") to provide ontology-based predictions (i.e. predictions that are coherent with the ontology structure):

S.tprTF <- tpr.dag(S.norm, g, root, positive="children", bottomup="threshold.free", topdown="htd");
S.tprT  <- tpr.dag(S.norm, g, root, positive="children", bottomup="threshold", topdown="htd", t=0.5);
S.tprW  <- tpr.dag(S.norm, g, root, positive="children", bottomup="weighted.threshold.free", topdown="htd", w=0.5);
S.tprWT <- tpr.dag(S.norm, g, root, positive="children", bottomup="weighted.threshold", topdown="htd", t=0.5, w=0.5);








DESCENS: Descendants Ensemble Classifier

As shown in [5] for tree-based hierarchies, the contribution of the descendants of a given node decays exponentially with their distance from the node itself and it is straightforward to see that this property also holds for DAG structured taxonomies. To overcame this limitation and in order to enhance the contribution of the most specific nodes to the overall decision of the ensemble we design the ensemble variant DESCENS. The novelty of DESCENS consists in strongly considering the contribution of all the descendants of each node instead of only that of its children (positive="descendants"). Therefore DESCENS predictions are more influenced by the information embedded in the leaves nodes, that are the classes containing the most informative and meaningful information from a biological and medical standpoint. DESCENS variants can be designed on the choice of the positive descendants \(\Delta_i\). The same strategies adopted for the choice of \(\phi_i\) can be also adopted for the choice of \(\Delta_i\), simply by replacing \(\phi_i\) with \(\Delta_i\) and \(child(i)\) with \(desc(i)\) in the various formulas shown in TPR-DAG: True Path Rule for DAG. Furthermore, we designed a variant specific only for DESCENS, that we named DESCENS-\(\tau\) (parameter bottomup="tau"). The DESCENS-\(\tau\) variant balances the contribution between the positives children of a node \(i\) and that of its positives descendants excluding its children by adding a weight \(\tau \in [0,1]\):


\[\bar{y}_i := \frac{\tau}{1+|\phi_i|}(\hat{y}_i + \sum_{j \in \phi_i} \bar{y}_j) + \frac{1-\tau}{1+|\delta_i|}(\hat{y}_i + \sum_{j\in \delta_i} \bar{y}_j)\]

where \(\phi_i\) are the positive children of \(i\) and \(\delta_i=\Delta_i \setminus \phi_i\) the descendants of \(i\) without its children.

If \(\tau=1\) we consider only the contribution of the positive children of \(i\); if \(\tau=0\) only the descendants that are not children contribute to the score, while for intermediate values of \(\tau\) we can balance the contribution of \(\phi_i\) and \(\delta_i\) positive nodes.

All the DESCENS variants adopt in the second step the HTD-DAG algorithm to assure the consistency of the predictions:

S.descensTF  <- tpr.dag(S.norm, g, root, positive="descendants", bottomup="threshold.free", topdown="htd");
S.descensT   <- tpr.dag(S.norm, g, root, positive="descendants", bottomup="threshold", topdown="htd", t=0.5);
S.descensW   <- tpr.dag(S.norm, g, root, positive="descendants", bottomup="weighted.threshold.free", topdown="htd", w=0.5);
S.descensWT  <- tpr.dag(S.norm, g, root, positive="descendants", bottomup="weighted.threshold", topdown="htd", t=0.5, w=05);
S.descensTAU <- tpr.dag(S.norm, g, root, positive="descendants", bottomup="tau", topdown="htd", t=0.5);








ISO-TPR: Isotonic Regression for DAG

The ISO-TPR algorithms (parameter positive="children" and topdown="gpav") considering the positive children in the bottom-up step and adopt GPAV (GPAV: Generalized Pool-Adjacent-Violators) instead of HTD-DAG (HTD-DAG: Hierarchical Top Down for DAG) in the consistency step. The most important feature of the ISO-TPR algorithms is that they maintain the hierarchical constraints by construction by selecting the closest solution (in the least square sense) to the bottom-up predictions that obey the True Path Rule:

S.isotprTF <- tpr.dag(S.norm, g, root, positive="children", bottomup="threshold.free", topdown="gpav");
S.isotprT  <- tpr.dag(S.norm, g, root, positive="children", bottomup="threshold", topdown="gpav", t=0.5);
S.isotprW  <- tpr.dag(S.norm, g, root, positive="children", bottomup="weighted.threshold.free", topdown="gpav", w=0.5);
S.isotprWT <- tpr.dag(S.norm, g, root, positive="children", bottomup="weighted.threshold", topdown="gpav", t=0.5, w=0.5);








ISO-DESCENS: Isotonic Regression with Descendants Ensemble Classifier

The ISO-DESCENS variants (parameter positive="descendants" and topdown="gpav") considering the positive descendants instead of positive children in the bottom-up step and adopt GPAV (instead of the HTD-DAG algorithm) to guarantee the consistency of the predictions:

S.isodescensTF  <- tpr.dag(S.norm, g, root, positive="descendants", bottomup="threshold.free", topdown="gpav");
S.isodescensT   <- tpr.dag(S.norm, g, root, positive="descendants", bottomup="threshold", topdown="gpav", t=0.5);
S.isodescensW   <- tpr.dag(S.norm, g, root, positive="descendants", bottomup="weighted.threshold.free", topdown="gpav", w=0.5);
S.isodescensWT  <- tpr.dag(S.norm, g, root, positive="descendants", bottomup="weighted.threshold", topdown="gpav", t=0.5, w=0.5);
S.isodescensTAU <- tpr.dag(S.norm, g, root, positive="descendants", bottomup="tau", topdown="gpav", t=0.5);








Obozinski Heuristic Methods

HEMDAG includes also the three heuristics ensemble methods (And, Max, Or) proposed in [4]:


	Max: reports the largest logistic regression (LR) value of self and all descendants: \(p_i = max_{j \in descendants(i)} \hat{p_j}\);


	And: reports the product of LR values of all ancestors and self. This is equivalent to computing the probability that all ancestral terms are “on” assuming that, conditional on the data, all predictions are independent: \(p_i = \prod_{j \in ancestors(i)} \hat{p_j}\);


	Or: computes the probability that at least one of the descendant terms is “on” assuming again that, conditional on the data, all predictions are independent: \(1 - p_i = \prod_{j \in descendants(i)} (1 - \hat{p_j})\);




To call Obozinski’s heuristic methods, just type:

S.max <- obozinski.max(S.norm, g, root);
S.and <- obozinski.and(S.norm, g, root);
S.or  <- obozinski.or(S.norm, g, root);





Alternatively, the Obozinski’s methods can be also called by properly setting the parameter heuristic of the function obozinski.methods:

S.max <- obozinski.methods(S, g, heuristic="max", norm=TRUE, norm.type="maxnorm");
S.and <- obozinski.methods(S, g, heuristic="and", norm=TRUE, norm.type="maxnorm");
S.or  <- obozinski.methods(S, g, heuristic="or",  norm=TRUE, norm.type="maxnorm");










Check Hierarchical Constraints

Predictions returned by a flat classifier do not respect the True Path Rule (since they neglect the structural information between different ontology terms), whereas the predictions returned by a hierarchical ensemble methods always obey the True Path Rule. According to this rule a positive instance for a class implies positive instance for all the ancestors of that class. We can easily check this fact by using the function check.hierarchy. Below (as an example) we check the consistency of the scores corrected according to the HTD-DAG strategy. Of course, all the scores matrices corrected with any hierarchical ensemble variants included in HEMDAG, respect the True Path Rule. We leave to the user the freedom to check the consistency of the scores matrix of the remaining 22 hierarchical ensemble variants encompassed in HEMDAG.

check.hierarchy(S, g, root)$status
"NOTOK"

check.hierarchy(S.htd, g, root)$status
"OK"








Performance Evaluation

To know the behavior of the hierarchical ensemble methods, the HEMDAG library provides both term-centric and protein-centric performance metrics:


	AUPRC: area under the precision-recall curve;


	AUROC: area under the ROC curve;


	Fmax : maximum hierarchical F-score [2];


	PXR  : precision at different recall levels;





Note


	HEMDAG allows to compute all the aforementioned performance metrics either one-shot or averaged across k fold. Depending on the dataset size, the metrics Fmax and PXR could take a while to finish. Please refer to HEMDAG reference manual [https://raw.githubusercontent.com/marconotaro/hemdag/master/inst/HEMDAG_2.7.4.pdf]  for further information about the input arguments of these functions.


	For computing the term-centric metrics (AUROC, AUPRC and PXR), HEMDAG makes use of the R package precrec (link [https://CRAN.R-project.org/package=precrec]).







Load the Annotation Matrix

To compare the hierarchical ensemble methods against the flat approach, we need to load the annotation matrix:

data(labels);





With the above command we loaded the annotations table L, that is a named 100 X 23 matrix. Rows correspond to genes (Entrez GeneID) and columns to HPO terms/classes. L[i, j] = 1 means that the gene i belong to class j, L[i, j] = 0 means that the gene i does not belong to class j.




Flat vs Hierarchical

Before computing performance metrics we should remove the root node from the annotation matrix, the flat score matrix and the hierarchical scores matrix. Indeed, it does not make sense to take into account the predictions of the root node, since it is a fake node added to the ontology for practical reasons (e.g. some graph-based software may require a single root node to work). In R this can be accomplished in one line of code.

## remove root node from annotation matrix
if(root %in% colnames(L))
    L <- L[,-which(colnames(L)==root)];

## remove root node from the normalized flat score matrix
if(root %in% colnames(S.norm))
    S.norm <- S.norm[,-which(colnames(S.norm)==root)];

## remove root node from hierarchical scores matrix (eg S.htd)
if(root %in% colnames(S.htd))
    S.htd <- S.htd[,-which(colnames(S.htd)==root)];





Now we can compare the flat approach RANKS versus the HTD-DAG strategy, by averaging (for instance) the performance across 3 folds:

## RANKS
prc.flat  <- auprc.single.over.classes(L, S.norm, folds=3, seed=23);
auc.flat  <- auroc.single.over.classes(L, S.norm, folds=3, seed=23);
pxr.flat  <- precision.at.given.recall.levels.over.classes(L, S.norm, recall.levels=seq(from=0.1, to=1, by=0.1), folds=3, seed=23);
fmax.flat <- compute.fmax(L, S.norm, n.round=3, verbose=FALSE, b.per.example=TRUE, folds=3, seed=23);

## HTD-DAG
prc.htd  <- auprc.single.over.classes(L, S.htd, folds=3, seed=23);
auc.htd  <- auroc.single.over.classes(L, S.htd, folds=3, seed=23);
pxr.htd  <- precision.at.given.recall.levels.over.classes(L, S.htd, recall.levels=seq(from=0.1, to=1, by=0.1), folds=3, seed=23);
fmax.htd <- compute.fmax(L, S.htd, n.round=3, verbose=FALSE, b.per.example=TRUE, folds=3, seed=23);





By looking at the results, it easy to see that the HTD-DAG outperforms the flat classifier RANKS:

## AUC performance: RANKS VS HTD-DAG
auc.flat$average
0.8297
auc.htd$average
0.8336

## PRC performance: RANKS VS HTD-DAG
prc.flat$average
0.4333
prc.htd$average
0.4627

## Fmax performance: RANKS VS HTD-DAG
fmax.flat$average
    P      R      S      F    avF      A      T
0.5042 0.8639 0.4485 0.6368 0.5269 0.6612 0.5720
fmax.htd$average
    P      R      S      F    avF      A      T
0.5576 0.7745 0.6519 0.6484 0.5617 0.7521 0.6487

## PXR: RANKS VS HTD-DAG
pxr.flat$average
   0.1    0.2    0.3    0.4    0.5    0.6    0.7    0.8    0.9    1
0.5821 0.5821 0.5821 0.5531 0.5531 0.4483 0.4388 0.4388 0.4388 0.4388
pxr.htd$average
   0.1    0.2    0.3    0.4    0.5    0.6    0.7    0.8    0.9    1
0.6218 0.6218 0.6218 0.5941 0.5941 0.4798 0.4668 0.4668 0.4668 0.4668






Note

HTD-DAG is the simplest ensemble approach among those available. HTD-DAG strategy makes flat scores consistent with the hierarchy by propagating from top to bottom the negative predictions. Hence, in the worst case might happen that the predictions at leaves nodes are all negatives. Other ensemble algorithms, such as GPAV and TPR-DAG (and variants) should lead to better improvements.








Tuning of Hyper-Parameter(s)

14 out of 18 of the TPR-DAG hierarchical algorithms are parametric. Instead of use a fixed threshold (as done in TPR-DAG: True Path Rule for DAG), we can tune the hyper-parameter(s) of the parametric variants through the function tpr.dag.cv. The hyper-parameter(s) can be maximize on the basis of AUPRC (parameter metric="prc") or Fmax (parameter metric="fmax"). Below, as an example, we maximize the threshold of the parametric variant isotprT on the basis of AUPRC metric.

threshold <- seq(0.1, 0.9, 0.1);

S.isotprT <- tpr.dag.cv(S, g, ann=L, norm=TRUE, norm.type="maxnorm", positive="children",
                        bottomup="threshold", topdown="gpav", W=NULL, parallel=FALSE,
                        ncores=1, threshold=threshold, weight=0, kk=3, seed=23,
                        metric="auprc", n.round=NULL);

## stdout
maxnorm normalization: done
training fold:  1   top auprc avg found:    0.4743567   best threshold: 0.1
training fold:  1   top auprc avg found:    0.4883769   best threshold: 0.5
training fold:  2   top auprc avg found:    0.2249245   best threshold: 0.1
training fold:  2   top auprc avg found:    0.2274687   best threshold: 0.3
training fold:  2   top auprc avg found:    0.2469059   best threshold: 0.4
training fold:  3   top auprc avg found:    0.8167777   best threshold: 0.1
training fold:  3   top auprc avg found:    0.8264204   best threshold: 0.3
training fold:  3   top auprc avg found:    0.8329289   best threshold: 0.7
tpr-dag correction done





Evaluating isotprT by computing term- and protein- centric performance (always averaging the performance across 3 folds), it easy to see how this ensemble variant outperform both the flat classifier RANKS and the hierarchical algorithm HTD-DAG:

## remove root node before computing performance
if(root %in% colnames(S.isotprT))
    S.isotprT <- S.isotprT[,-which(colnames(S.isotprT)==root)];

prc.isotprT  <- auprc.single.over.classes(L, S.isotprT, folds=3, seed=23);
auc.isotprT  <- auroc.single.over.classes(L, S.isotprT, folds=3, seed=23);
pxr.isotprT  <- precision.at.given.recall.levels.over.classes(L, S.isotprT, recall.levels=seq(from=0.1, to=1, by=0.1), folds=3, seed=23);
fmax.isotprT <- compute.fmax(L, S.isotprT, n.round=3, verbose=FALSE, b.per.example=TRUE, folds=3, seed=23);

## AUC performance: RANKS VS HTD-DAG vs isotprT
auc.flat$average
0.8297
auc.htd$average
0.8336
auc.isotprT$average
0.8446

## PRC performance: RANKS VS HTD-DAG vs isotprT
prc.flat$average
0.4333
prc.htd$average
0.4627
prc.isotprT$average
0.5346

## Fmax performance: RANKS VS HTD-DAG vs isotprT
fmax.flat$average
    P      R      S      F    avF      A      T
0.5042 0.8639 0.4485 0.6368 0.5269 0.6612 0.5720
fmax.htd$average
    P      R      S      F    avF      A      T
0.5576 0.7745 0.6519 0.6484 0.5617 0.7521 0.6487
fmax.isotprT$average
    P      R      S      F    avF      A      T
0.5896 0.8306 0.5283 0.6896 0.6106 0.7066 0.6340

## PXR: RANKS VS HTD-DAG vs isotprT
pxr.flat$average
   0.1    0.2    0.3    0.4    0.5    0.6    0.7    0.8    0.9    1
0.5821 0.5821 0.5821 0.5531 0.5531 0.4483 0.4388 0.4388 0.4388 0.4388
pxr.htd$average
   0.1    0.2    0.3    0.4    0.5    0.6    0.7    0.8    0.9    1
0.6218 0.6218 0.6218 0.5941 0.5941 0.4798 0.4668 0.4668 0.4668 0.4668
pxr.isotprT$average
   0.1    0.2    0.3    0.4    0.5    0.6    0.7    0.8    0.9    1
0.6848 0.6848 0.6848 0.6697 0.6697 0.5417 0.5027 0.5027 0.5027 0.5027





By properly setting the parameters positive, bottomup and topdown of the function tpr.dag.cv, it is easy to make experiments with all the 18 TPR-DAG ensemble variants. For further details on the other input arguments of the function tpr.dag.cv, please refer to the reference manual [https://raw.githubusercontent.com/marconotaro/hemdag/master/inst/HEMDAG_2.7.4.pdf].


Note

Note that tuning the hyper-parameter(s) of the ensemble variants on the basis of Fmax might involve high running time (due to the nature itself of the Fmax metric).






Hold-out Functions

For all the hierarchical ensemble algorithms encompassed in the HEMDAG library there is also a corresponding hold-out version. The hold-out functions respect to the vanilla ones, require in input a vector of integer numbers corresponding to the indexes of the elements (rows) of the scores matrix S to be used in the test set (parameter testIndex). The hold-out ensemble functions included in HEMDAG are:



	htd.holdout;


	gpav.holdout;


	tpr.dag.holdout;


	obozinski.holdout;







For the sake of space we do not show here experiments by using the hold-out version of the hierarchical functions. Please refer to the reference manual [https://raw.githubusercontent.com/marconotaro/hemdag/master/inst/HEMDAG_2.7.4.pdf], for further details on these functions.

References


	1

	Oleg Burdakov, Oleg Sysoev, Anders Grimvall, and Mohamed Hussian. An O(n2) Algorithm for Isotonic Regression, chapter 83, pages 25–33. Springer US, Boston, MA, 2006. URL: https://doi.org/10.1007/0-387-30065-1_3, doi:10.1007/0-387-30065-1_3 [https://doi.org/10.1007/0-387-30065-1_3].



	2

	Yuxiang Jiang, Tal Ronnen Oron, Wyatt T. Clark, Asma R. Bankapur, Daniel D’Andrea, Rosalba Lepore, Christopher S. Funk, Indika Kahanda, Karin M. Verspoor, Asa Ben-Hur, Da Chen Emily Koo, Duncan Penfold-Brown, Dennis Shasha, Noah Youngs, Richard Bonneau, Alexandra Lin, Sayed M. E. Sahraeian, Pier Luigi Martelli, Giuseppe Profiti, Rita Casadio, Renzhi Cao, Zhaolong Zhong, Jianlin Cheng, Adrian Altenhoff, Nives Skunca, Christophe Dessimoz, Tunca Dogan, Kai Hakala, Suwisa Kaewphan, Farrokh Mehryary, Tapio Salakoski, Filip Ginter, Hai Fang, Ben Smithers, Matt Oates, Julian Gough, Petri Törönen, Patrik Koskinen, Liisa Holm, Ching-Tai Chen, Wen-Lian Hsu, Kevin Bryson, Domenico Cozzetto, Federico Minneci, David T. Jones, Samuel Chapman, Dukka BKC, Ishita K. Khan, Daisuke Kihara, Dan Ofer, Nadav Rappoport, Amos Stern, Elena Cibrian-Uhalte, Paul Denny, Rebecca E. Foulger, Reija Hieta, Duncan Legge, Ruth C. Lovering, Michele Magrane, Anna N. Melidoni, Prudence Mutowo-Meullenet, Klemens Pichler, Aleksandra Shypitsyna, Biao Li, Pooya Zakeri, Sarah ElShal, Léon-Charles Tranchevent, Sayoni Das, Natalie L. Dawson, David Lee, Jonathan G. Lees, Ian Sillitoe, Prajwal Bhat, Tamás Nepusz, Alfonso E. Romero, Rajkumar Sasidharan, Haixuan Yang, Alberto Paccanaro, Jesse Gillis, Adriana E. Sedeño-Cortés, Paul Pavlidis, Shou Feng, Juan M. Cejuela, Tatyana Goldberg, Tobias Hamp, Lothar Richter, Asaf Salamov, Toni Gabaldon, Marina Marcet-Houben, Fran Supek, Qingtian Gong, Wei Ning, Yuanpeng Zhou, Weidong Tian, Marco Falda, Paolo Fontana, Enrico Lavezzo, Stefano Toppo, Carlo Ferrari, Manuel Giollo, Damiano Piovesan, Silvio C.E. Tosatto, Angela del Pozo, José M. Fernández, Paolo Maietta, Alfonso Valencia, Michael L. Tress, Alfredo Benso, Stefano Di Carlo, Gianfranco Politano, Alessandro Savino, Hafeez Ur Rehman, Matteo Re, Marco Mesiti, Giorgio Valentini, Joachim W. Bargsten, Aalt D. J. van Dijk, Branislava Gemovic, Sanja Glisic, Vladmir Perovic, Veljko Veljkovic, Nevena Veljkovic, Danillo C. Almeida-e-Silva, Ricardo Z. N. Vencio, Malvika Sharan, Jörg Vogel, Lakesh Kansakar, Shanshan Zhang, Slobodan Vucetic, Zheng Wang, Michael J. E. Sternberg, Mark N. Wass, Rachael P. Huntley, Maria J. Martin, Claire O’Donovan, Peter N. Robinson, Yves Moreau, Anna Tramontano, Patricia C. Babbitt, Steven E. Brenner, Michal Linial, Christine A. Orengo, Burkhard Rost, Casey S. Greene, Sean D. Mooney, Iddo Friedberg, and Predrag Radivojac. An expanded evaluation of protein function prediction methods shows an improvement in accuracy. Genome Biology, 17(1):184, Sep 2016. URL: https://doi.org/10.1186/s13059-016-1037-6, doi:10.1186/s13059-016-1037-6 [https://doi.org/10.1186/s13059-016-1037-6].



	3

	Marco Notaro, Max Schubach, Peter N. Robinson, and Giorgio Valentini. Prediction of Human Phenotype Ontology terms by means of hierarchical ensemble methods. BMC Bioinformatics, 18(1):449, December 2017. URL: http://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-017-1854-y (visited on 2021-02-01), doi:10.1186/s12859-017-1854-y [https://doi.org/10.1186/s12859-017-1854-y].



	4

	G. Obozinski, G. Lanckriet, C. Grant, Jordan. M., and W.S. Noble. Consistent probabilistic output for protein function prediction. Genome Biology, 9:135–142, 2008. URL: http://europepmc.org/articles/PMC2447540, doi:10.1186/gb-2008-9-s1-s6 [https://doi.org/10.1186/gb-2008-9-s1-s6].



	5

	Giorgio Valentini. True path rule hierarchical ensembles for genome-wide gene function prediction. IEEE/ACM Trans. Comput. Biology Bioinform., 8(3):832–847, 2011. URL: https://doi.org/10.1109/TCBB.2010.38, doi:10.1109/TCBB.2010.38 [https://doi.org/10.1109/TCBB.2010.38].













          

      

      

    

  

    
      
          
            
  
HEMDAG programmatic call and evaluation

Here we explain how to apply the ensemble algorithms of the HEMDAG family in both cross-validated and hold-out experiments.

HEMDAG can in principle boost the predictions of any flat learning method by reconciling the flat predictions with the topology of the underlying ontology. Hence, to run HEMDAG we need the following ingredients:


	the label matrix M representing the protein annotations to functional terms;


	the graph g representing the hierarchy of the functional terms;


	the flat score matrix S representing a score or a probability that a gene/protein belongs to a given functional term;




To build the graph, the label matrix and the protein-protein interaction network you can use this pipeline [https://github.com/marconotaro/godata-pipe].
Instead, to obtain the flat score matrix you can use the shogun library [https://www.shogun-toolbox.org/] or the caret package [https://topepo.github.io/caret/] or any other software returning a score or a probability that a protein belongs to a functional term.


Note

HEMDAG is built upon flat predictions. HEMDAG corrects all the violations of the hierarchical relationships between ontology terms.




Note

To run the experiments shown below, make sure you have installed the following requirements:



	HEMDAG >= 2.7.4


	R >= 4.0.4


	Ubuntu >= 16.04










HEMDAG Call Script

To call any hierarchical ensemble algorithm of the HEMDAG family on either a time-lapse hold-out or a cross-validated dataset you can execute the following script:

	  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

	#!/usr/bin/Rscript

## load library
library(HEMDAG);
suppressPackageStartupMessages(library(graph)); ## silence biocgenerics mask messages...
library(optparse);

## command line arguments
## for a detailed description, please see the manual: https://cran.r-project.org/web/packages/HEMDAG/HEMDAG.pdf
optionList <- list(
    make_option(c("-o", "--organism"), type="character", default="7227_drome",
        help="organism name in the form <taxon>_<name> (def. 7227_drome)"),
    make_option(c("-d", "--domain"), type="character", default="mf",
        help="go domain. It can be: bp, mf or cc (def. mf)"),
    make_option(c("-e", "--exptype"), type="character", default="ho",
        help="type of dataset on which run HEMDAG. It can be: ho (hold-out) or cv (cross-validated) -- def. ho"),
    make_option(c("-f", "--flat"), type="character", default="svmlinear",
        help="flat classifier"),
    make_option(c("-p", "--positive"), type="character", default="descendants",
        help="positive nodes selection. It can be: children or descendants.
                Skip this parameter if only topdown strategy is applied (def. descendants)"),
    make_option(c("-b", "--bottomup"), type="character", default="tau",
        help="bottomup strategy. It can be: none, threshold.free, threshold, weighted.threshold.free, weighted.threshold or tau.
                If none only topdown strategy is applied (def. tau)"),
    make_option(c("-t", "--topdown"), type="character", default="gpav",
        help="topdown strategy. It can be: htd or gpav (def. gpav)"),
    make_option(c("-c", "--threshold"), type="character", default="seq(from=0.1, to=0.9, by=0.1)",
        help="threshold for the choice of positive nodes.
                It can be a fixed value or an array of values (def. seq(from=0.1, to=0.9, by=0.1))"),
    make_option(c("-w", "--weight"), type="character", default="0",
        help="weight for the choice of positive nodes. It can be a fixed value or an array of values (def. 0)"),
    make_option(c("-m", "--metric"), type="character", default="auprc",
        help="performance metric on which maximize the parametric ensemble algorithms. It can be: auprc or fmax (def. auprc)"),
    make_option(c("-r", "--round"), type="integer", default="3",
        help="number of rounding digits to be applied for choosing the best Fmax. To be used only if metric is set to fmax (def. 3)"),
    make_option(c("-s", "--seed"), type="integer", default="23",
        help="seed for the random generator to create folds (def. 23)"),
    make_option(c("-k", "--fold"), type="integer", default="5",
        help="number of folds for the cross validation (def. 5)"),
    make_option(c("-l", "--parallel"), type="logical", default=FALSE, action="store_true",
        help="should the sequential or parallel version of gpav be run?
                If flag -p is 'on' the gpav parallel version is run. NB: only gpav can be run in parallel (def. FALSE)"),
    make_option(c("-n", "--cores"), type="integer", default="1",
        help="number of cores to use for the parallel execution of gpav (def. 1)"),
    make_option(c("-z", "--norm"), type="logical", default=FALSE, action="store_true",
        help="should the flat score matrix be normalized? If flag -p is 'on' the input flat scores is normalized (def. FALSE)"),
    make_option(c("-y", "--normtype"), type="character", default="none",
        help="type of normalization. It can be maxnorm or qnorm (def. none)")
);

optParser <- OptionParser(option_list=optionList);
opt <- parse_args(optParser);

prefix    <- opt$organism;
organism  <- strsplit(prefix,"_")[[1]][2];
exptype   <- opt$exptype;
flat      <- opt$flat;
positive  <- opt$positive;
bottomup  <- opt$bottomup;
topdown   <- opt$topdown;
domain    <- opt$domain;
threshold <- eval(parse(text=opt$threshold));
weight    <- eval(parse(text=opt$weight));
metric    <- opt$metric;
round     <- opt$round;
seed      <- opt$seed;
kk        <- opt$fold;
parallel  <- opt$parallel;
cores     <- opt$cores;
norm      <- opt$norm;
normtype  <- opt$normtype;
if(normtype == "none")
    normtype <- NULL;

## hemdag algorithm to be displayed in output file name -> 18 iso/tpr-dag ensemble combinations + gpav + htd (tot 20 hemdag family)
if(positive=="children" && bottomup=="threshold.free" && topdown=="htd")
    hemdag.name <- "tprTF";
if(positive=="children" && bottomup=="threshold" && topdown=="htd")
    hemdag.name <- "tprT";
if(positive=="children" && bottomup=="weighted.threshold.free" && topdown=="htd")
    hemdag.name <- "tprW";
if(positive=="children" && bottomup=="weighted.threshold" && topdown=="htd")
    hemdag.name <- "tprwt";
if(positive=="descendants" && bottomup=="threshold.free" && topdown=="htd")
    hemdag.name <- "descensTF";
if(positive=="descendants" && bottomup=="threshold" && topdown=="htd")
    hemdag.name <- "descensT";
if(positive=="descendants" && bottomup=="weighted.threshold.free" && topdown=="htd")
    hemdag.name <- "descensW";
if(positive=="descendants" && bottomup=="weighted.threshold" && topdown=="htd")
    hemdag.name <- "descensWT";
if(positive=="descendants" && bottomup=="tau" && topdown=="htd")
    hemdag.name <- "descensTAU";
if(positive=="children" && bottomup=="threshold.free" && topdown=="gpav")
    hemdag.name <- "isotprTF";
if(positive=="children" && bottomup=="threshold" && topdown=="gpav")
    hemdag.name <- "isotprT";
if(positive=="children" && bottomup=="weighted.threshold.free" && topdown=="gpav")
    hemdag.name <- "isotprW";
if(positive=="children" && bottomup=="weighted.threshold" && topdown=="gpav")
    hemdag.name <- "isotprWT";
if(positive=="descendants" && bottomup=="threshold.free" && topdown=="gpav")
    hemdag.name <- "isodescensTF";
if(positive=="descendants" && bottomup=="threshold" && topdown=="gpav")
    hemdag.name <- "isodescensT";
if(positive=="descendants" && bottomup=="weighted.threshold.free" && topdown=="gpav")
    hemdag.name <- "isodescensW";
if(positive=="descendants" && bottomup=="weighted.threshold" && topdown=="gpav")
    hemdag.name <- "isodescensWT";
if(positive=="descendants" && bottomup=="tau" && topdown=="gpav")
    hemdag.name <- "isodescensTAU";
if(bottomup=="none" && topdown=="gpav")
    hemdag.name <- "gpav";
if(bottomup=="none" && topdown=="htd")
    hemdag.name <- "htd";

## I/O directories
data.dir <- paste0("../data/", exptype, "/");
res.dir  <- paste0("../res/",  exptype, "/");
if(!dir.exists(res.dir)){dir.create(res.dir, recursive=TRUE);}

## flat/ann/dag/testIndex files
files <- list.files(data.dir);
flat.file <- files[grep(paste0(organism, ".*", domain, ".scores.*", flat), files)];
ann.file  <- files[grep(paste0(domain,".ann"), files)];
dag.file  <- files[grep(paste0(domain,".dag"), files)];
if(exptype == "ho"){
    idx.file  <- files[grep(paste0(domain,".testindex"), files)];
    if(length(idx.file)==0)
        stop("no index file found\n");
}

## check if flat|ann|dag exists
if(length(flat.file)==0 || length(ann.file)==0 || length(dag.file)==0)
    stop("no flat|ann|dag file found\n");

## load data
S <- get(load(paste0(data.dir, flat.file)));
g <- get(load(paste0(data.dir, dag.file)));
ann <- get(load(paste0(data.dir, ann.file)));
if(exptype == "ho")
    testIndex <- get(load(paste0(data.dir, idx.file)));

## shrink graph g to terms of matrix S -- if number of nodes between g and S mismatch
root <- root.node(g);
nd <- colnames(S);
class.check <- ncol(S) != graph::numNodes(g);
if(class.check){
    root.check <- root %in% colnames(S);
    if(!root.check)
        nd <- c(root, nd);
    g <- build.subgraph(nd, g, edgemode="directed");
    ann <- ann[, colnames(S)];
}

## address case when (iso)descensW is called with a fixed value of w to enter in the right branch
if(bottomup=="weighted.threshold.free" && length(weight)==1)
    threshold <- 0;

## elapsed time
start.elapsed <- proc.time();

## HEMDAG calling
if(exptype == "ho"){
    if(bottomup=="none"){
        if(topdown=="gpav"){
            S.hier <- gpav.holdout(S=S, g=g, testIndex=testIndex, W=NULL, parallel=parallel,
                ncores=cores, norm=norm, norm.type=normtype);
        }else{
            S.hier <- htd.holdout(S=S, g=g, testIndex=testIndex, norm=norm, norm.type=normtype);
        }
    }else{ ## branch to call HEMDAG by tuning the parameters
        if(length(threshold)>1 || length(weight)>1){
            S.hier <- tpr.dag.holdout(S, g, ann=ann, testIndex=testIndex, norm=norm, norm.type=normtype,
                positive=positive, bottomup=bottomup, topdown=topdown, W=NULL, parallel=parallel, ncores=cores,
                threshold=threshold, weight=weight, kk=kk, seed=seed, metric=metric, n.round=round);
        }else{ ## branch to call HEMDAG with fixed the parameters
            ## add root node if it does not exist
            if(!(root %in% colnames(S))){
                max.score <- max(S);
                z <- rep(max.score,nrow(S));
                S <- cbind(z,S);
                colnames(S)[1] <- root;
            }
            ## normalization
            if(norm){
                S <- scores.normalization(norm.type=normtype, S);
                cat(normtype, "normalization done\n");
            }
            ## shrink S to test indexes
            S.test <- S[testIndex,];
            ## degenerate case when test set has just one row/example
            if(!is.matrix(S.test)){
                test.sample <- rownames(S)[testIndex];
                S.test <- matrix(S.test, ncol=length(S.test), dimnames=list(test.sample, names(S.test)));
            }
            ## tpr-dag correction
            S.hier <- tpr.dag(S.test, g, root=root, positive=positive, bottomup=bottomup, topdown=topdown,
                t=threshold, w=weight, W=NULL, parallel=parallel, ncores=cores);
            ## print chosen parameters
            if(bottomup=="weighted.threshold.free"){
                cat("fixed weight:", weight, "\n");
            }else if(bottomup=="weighted.threshold"){
                cat("fixed weight:", weight, "fixed threshold:", threshold, "\n");
            }else{
                cat("fixed threshold:", threshold, "\n");
            }
            cat("tpr-dag correction done\n");
        }
    }
}else{
    if(bottomup=="none"){
        if(topdown=="gpav"){
            S.hier <- gpav.vanilla(S=S, g=g, W=NULL, parallel=parallel, ncores=cores, norm=norm, norm.type=normtype);
        }else{
            S.hier <- htd.vanilla(S=S, g=g, norm=norm, norm.type=normtype);
        }
    }else{  ## branch to call HEMDAG by tuning the parameters
        if(length(threshold)>1 || length(weight)>1){
            S.hier <- tpr.dag.cv(S, g, ann=ann, norm=norm, norm.type=normtype, positive=positive, bottomup=bottomup,
                topdown=topdown, W=NULL, parallel=parallel, ncores=cores, threshold=threshold, weight=weight,
                kk=kk, seed=seed, metric=metric, n.round=round);
        }else{  ## branch to call HEMDAG with fixed parameters
            ## add root node if it does not exist
            if(!(root %in% colnames(S))){
                max.score <- max(S);
                z <- rep(max.score,nrow(S));
                S <- cbind(z,S);
                colnames(S)[1] <- root;
            }
            ## normalization
            if(norm){
                S <- scores.normalization(norm.type=normtype, S);
                cat(normtype, "normalization done\n");
            }
            S.hier <- tpr.dag(S, g, root=root, positive=positive, bottomup=bottomup, topdown=topdown,
                t=threshold, w=weight, W=NULL, parallel=parallel, ncores=cores);
            ## print chosen parameters
            if(bottomup=="weighted.threshold.free"){
                cat("weight: ", weight, "\n");
            }else if(bottomup=="weighted.threshold"){
                cat("weight: ", weight, "threshold: ", threshold, "\n");
            }else{
                cat("threshold: ", threshold, "\n");
            }
            cat("tpr-dag correction done\n");
        }
    }
}

stop.elapsed <- proc.time() - start.elapsed;
timing.s <- stop.elapsed["elapsed"];
timing.m <- round(timing.s/(60),4);
timing.h <- round(timing.m/(60),4);
cat(hemdag.name, "running time:", timing.s["elapsed"], "(seconds)", "|", timing.m["elapsed"], "(minutes)", "|" , timing.h["elapsed"], "(hours)", "\n\n");

## store results
## outname
fname <- unlist(strsplit(flat.file, split="[.,_]"));
outname <- paste0(fname[-((length(fname)-1):length(fname))], collapse="_");
if(norm==TRUE && !(is.null(normtype)))
    outname <- paste0(outname,"_",normtype);
if(exptype == "ho"){
    save(S.hier, file=paste0(res.dir, outname, "_", hemdag.name, "_holdout.rda"), compress=TRUE);
}else{
    save(S.hier, file=paste0(res.dir, outname, "_", hemdag.name, ".rda"), compress=TRUE);
}







You can download the script as follow:

mkdir -p ~/hemdag/script/
cd ~/hemdag/script/
wget -nc https://raw.githubusercontent.com/marconotaro/hemdag/master/docs/playground/script/hemdag-call.R





Before executing the script be sure to have correctly installed the latest version of the HEMDAG package (and all its dependencies – see Installation) and the package optparse [https://cran.r-project.org/web/packages/optparse/].


Note


	The output hierarchical score matrix of the called HEMDAG algorithm (whose name is saved in the output .rda file name) is stored in the folder ~/hemdag/res/(ho|cv) depending on whether you chose to execute HEMDAG on either hold-out (ho) or cross-validated (cv) datasets. The HEMDAG elapsed time is printed on the shell.


	By default, if no inputs parameters are specified in hemdag-call.R, the script executes the isodescensTAU algorithm on the hold-out dataset by tuning the parameter tau on the basis of AUPRC.


	The tuning of the hyper-parameters can take from few minutes up to few hours depending on the size of the dataset and on the adopted evaluation metric (Fmax is slower than AUPRC).







Arguments Explanation

For the usage of the script, type in the shell under the ~/hemdag/script/ folder:

Rscript hemdag-call.R -h





For a detailed description of the input arguments positive, bottomup, topdown, threshold, weight, metric, round, seed, fold, parallel, cores, norm, normtype, please refer to the description of the input variables of the functions (gpav|htd|tpr.dag).(holdout|cv) in the HEMDAG reference manual [https://raw.githubusercontent.com/marconotaro/hemdag/master/inst/HEMDAG_2.7.4.pdf].


Parametric-free arguments

To call a parametric-free HEMDAG algorithm the main required arguments are:


	-b (--bottomup) 
  
    
    Frequently Asked Questions
    

    

    
 
  

    
      
          
            
  
Frequently Asked Questions


Where are the questions?

Right now, there are no frequently asked questions. Please contact the authors if you have questions.







          

      

      

    

  

  
    
    Cite HEMDAG
    

    

    
 
  

    
      
          
            
  
Cite HEMDAG

If you use HEMDAG package please cite the following references:


	Notaro M, Marco Frasca, Alessandro Petrini, Jessica Gliozzo, and Giorgio Valentini. HEMDAG: a family of modular and scalable hierarchical ensemble methods to improve gene ontology term prediction. Submitted to Bioinformatics.


	Marco Notaro, Max Schubach, Peter N. Robinson, and Giorgio Valentini. Prediction of Human Phenotype Ontology terms by means of hierarchical ensemble methods. BMC Bioinformatics, 18(1):449, December 2017. doi:10.1186/s12859-017-1854-y [https://doi.org/10.1186/s12859-017-1854-y].








          

      

      

    

  

  
    
    Contributing
    

    

    
 
  

    
      
          
            
  
Contributing

Contributions are welcome, and they are greatly appreciated!
Every little bit helps, and credit will always be given.

You can contribute in many ways:


Types of Contributions


Report Bugs

Report bugs at https://github.com/marconotaro/hemdag/issues

If you are reporting a bug, please include:


	Your operating system name and version.


	Any details about your local setup that might be helpful in troubleshooting.


	Detailed steps to reproduce the bug.







Fix Bugs

Look through the Github issues for bugs.
If you want to start working on a bug then please write short message on the issue tracker to prevent duplicate work.




Implement Features

Look through the Github issues for features.
If you want to start working on an issue then please write short message on the issue tracker to prevent duplicate work.




Write Documentation

HEMDAG could always use more documentation, whether as part of the official HEMDAG docs, in docstrings, or even on the web in blog posts, articles, and such.

HEMDAG uses Sphinx [https://sphinx-doc.org] for the user manual (that you are currently reading).
See doc_guidelines on how the documentation reStructuredText is used.
See doc_setup on creating a local setup for building the documentation.




Submit Feedback

The best way to send feedback is to file an issue at https://github.com/marconotaro/hemdag/issues

If you are proposing a feature:


	Explain in detail how it would work.


	Keep the scope as narrow as possible, to make it easier to implement.


	Remember that this is a volunteer-driven project, and that contributions are welcome :)









Documentation Guidelines

For the documentation, please adhere to the following guidelines:


	Put each sentence on its own line, this makes tracking changes through Git SCM easier.


	Provide hyperlink targets, at least for the first two section levels.


	Use the section structure from below.




.. heading_1:

=========
Heading 1
=========


.. heading_2:

---------
Heading 2
---------


.. heading_3:

Heading 3
=========


.. heading_4:

Heading 4
---------


.. heading_5:

Heading 5
~~~~~~~~~


.. heading_6:

Heading 6
:::::::::








Documentation Setup

For building the documentation, you have to install the Python program Sphinx.
We use conda for that, see Installation via Conda

Use the following steps for installing Sphinx and the dependencies for building the HEMDAG documentation:

$ cd hemdag/docs
$ conda create --name sphinx --file environment.yml
$ source activate sphinx





Use the following for building the documentation.
If you are not in the sphinx environment (e.g. you uses source deactivate sphinx) please activate the virtual environment using source activate sphinx
Afterwards, you can always use make html for building.

(sphinx) $ cd hemdag/docs
(sphinx) $ make html  # rebuild for changed files only
(sphinx) $ make clean && make html  # force rebuild








Get Started!

Ready to contribute?


	Fork the hemdag repo on GitHub.


	Clone your fork locally:





$ git clone git@github.com:your_name_here/hemdag.git









	Create a branch for local development:





$ git checkout -b name-of-your-bugfix-or-feature





Now you can make your changes locally.





	When you’re done making your changes, make sure that the build runs through.

$ cd docs && make clean && make html







	Commit your changes and push your branch to GitHub:





$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature









	Submit a pull request through the GitHub website.







Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:


	The pull request should include tests.


	If the pull request adds functionality, the docs should be updated.


	Describe your changes in the NEWS.md file.










          

      

      

    

  

  
    
    Authors
    

    

    
 
  

    
      
          
            
  
Authors

in alphabetical order


	Marco Notaro (maintainer)


	Max Schubach


	Giorgio Valentini








          

      

      

    

  

  
    
    History
    

    

    
 
  

    
      
          
            
  
History


HEMDAG 2.7.4


Changes


	remove extra input parameter f.criterion from tpr.dag.cv, tpr.dag.holdout, find.best.f and compute.fmax: type of F-measure used to select the best F-measure is always the harmonic mean between the average precision and recall (f.criterion="F") and never the F-measure computed as average across examples (f.criterion="avF");


	fix a minor bug in tpr.dag.holdout;


	add warning checks in tpr.dag.cv and tpr.dag.holdout;


	improve some test cases and manual;









HEMDAG 2.7.3


New Features


	add build.scores.matrix.from.list;


	add build.scores.matrix.from.tupla;


	add several test cases;







Changes


	streamline and lighten HEMDAG’s hierarchical functions (namespace clearer and lighter);


	rename the following functions:


	htd-dag:


	Do.HTD –> htd.vanilla;


	Do.HTD.holdout –> htd.holdout;






	obozinski heuristic methods:


	heuristic.max –> obozinski.max;


	heuristic.and –> obozinski.and;


	heuristic.or –> obozinski.or;


	Do.heuristic.methods –> obozinski.methods;


	Do.heuristic.methods.holdout –> obozinski.holdout;






	gpav:


	GPAV –> gpav;


	GPAV.over.examples –> gpav.over.examples;


	GPAV.parallel –> gpav.parallel;


	Do.GPAV –> gpav.vanilla;


	Do.GPAV.holdout –> gpav.holdout;






	tpr-dag:


	TPR.DAG –> tpr.dag;


	Do.TPR.DAG –> tpr.dag.cv;


	Do.TPR.DAG.holdout –> tpr.dag.holdout;






	utility functions:


	get.parents –> build.parents;


	get.parents.top.down –> build.parents.top.down;


	get.parents.bottom.up –> build.parents.bottom.up;


	get.parents.topological.sorting –> build.parents.topological.sorting;


	get.children.top.down –> build.children.top.down;


	get.children.bottom.up –> build.children.bottom.up;


	check.DAG.integrity –> check.dag.integrity;


	do.subgraph –> build.subgraph;


	do.submatrix –> build.submatrix;


	do.stratified.cv.data.single.class –> stratified.cv.data.single.class;


	do.stratified.cv.data.over.classes –> stratified.cv.data.over.classes;


	do.unstratified.cv.data –> unstratified.cv.data;


	do.edges.from.HPO.obo –> build.edges.from.hpo.obo;






	performance metrics:


	AUPRC.single.class –> auprc.single.class;


	AUPRC.single.over.classes –> auprc.single.over.classes;


	AUROC.single.class –> auroc.single.class;


	AUROC.single.over.classes –> auroc.single.over.classes;


	compute.Fmeasure.multilabel –> compute.fmax;










	remove the following functions (no more needed):


	Do.flat.scores.normalization;


	Do.full.annotation.matrix;






	improve manual;


	make HEMDAG’s documentation clearer and less redundant;









HEMDAG 2.6.1


Changes


	fix stringsAsFactors issue – link [https://developer.r-project.org/Blog/public/2020/02/16/stringsasfactors/index.html];









HEMDAG 2.6.0


Changes


	fix NAMESPACE notes in CRAN checks;


	add link to the GitHub repository obogaf::parser;


	adjust link to read the docs;









HEMDAG 2.5.9


New Features


	add build.consistent.graph;







Changes


	add some warning checks in functions that compute performance metrics;


	improve some graph utility functions;


	improve manual;


	improve tutorial on read the docs – link [https://hemdag.readthedocs.io];


	make namespace clearer;


	fix minor bugs;


	remove defunct functions;









HEMDAG 2.4.8


Changes


	fix a minor bug in Do.GPAV.holdout;


	improve package description;









HEMDAG 2.4.7


New Features


	fix degenerate case in precision.at.all.recall.levels.single.class (labels are all negatives/positives);


	fix degenerate case in precision.at.given.recall.levels.over.classes (labels in a fold are all negatives/positives);


	fix degenerate case in do.stratified.cv.data.single.class (sampling of the labels with just one positive/negative);


	add input variable compute.performance to the following high level functions:


	Do.TPR.DAG and Do.TPR.DAG.holdout;


	Do.HTD and Do.HTD.holdout;


	Do.GPAV and Do.GPAV.holdout;


	Do.heuristic.methods and Do.heuristic.methods.holdout;











Changes


	improve manual;









HEMDAG 2.3.6


New Features


	add lexicographical.topological.sort;







Changes


	fix minor bugs;


	improve manual;









HEMDAG 2.2.5


New Features


	precision-recall performance computed through precrec package:


	add precision.at.all.recall.levels.single.class;


	PXR.at.multiple.recall.levels.over.classes –> precision.at.given.recall.levels.over.classes;






	improve IO functions: the extension of the input or output file can be or plain text (.txt) or compressed (.gz);







Changes


	fix minor bugs;


	improve manual;









HEMDAG 2.2.4


Changes


	fix CRAN Package Check Results: remove unneeded header and define from GPAV C++ source code









HEMDAG 2.2.3


New Features


	add GPAV algorithm (Burdakov et al., Journal of Computational Mathematics, 2006 – link [https://doi.org/10.1007/0-387-30065-1_3]);


	Embed GPAV algorithm in the top-down step of the functions TPR.DAG, Do.TPR.DAG and Do.TPR.DAG.holdout;


	Some functions have been defunct. To know the defunct functions just typing in the R environment: help("HEMDAG-defunct");







Changes


	improve manual;







AUTHOR


	add Alessandro Petrini as author for his contribution in writing the C++ code of GPAV algorithm;









HEMDAG 2.1.3


Changes


	various fixes from 2.1.2









HEMDAG 2.1.2


New Features


	improve performance metrics:


	add compute.Fmeasure.multilabel;


	add PXR.at.multiple.recall.levels.over.classes;


	all the performance metrics (AUPRC, AUROC, FMM, PXR) can be computed either one-shot or averaged across folds;






	improve the high-level hierarchical ensemble functions:


	embed the new performance metric functions;


	add the parameter metric: maximization by FMAX or PRC (see manual for further details);


	add some checkers (warning/stop messages) to make the library more user-friendly;











Changes


	improve manual;









HEMDAG 2.0.1


Changes


	fix bug in do.stratified.cv.data.single.class;









HEMDAG 2.0.0


New Features


	add TPR-DAG: function gathering several hierarchical ensemble variants;


	add Do.TPR.DAG: high-level function to run TPR-DAG cross-validated experiments;


	add Do.TPR.DAG.holdout: high-level functions to run TPR-DAG holdout experiments;


	The following TPR-DAG and DESCENS high-level functions were remove:


	Do.tpr.threshold.free;


	Do.tpr.threshold.cv;


	Do.tpr.weighted.threshold.free.cv;


	Do.tpr.weighted.threshold.cv;


	Do.descens.threshold.free;


	Do.descens.threshold.cv;


	Do.descens.weighted.threshold.free.cv;


	Do.descens.tau.cv;


	Do.descens.weighted.threshold.cv;


	Do.tpr.threshold.free.holdout;


	Do.tpr.threshold.holdout;


	Do.tpr.weighted.threshold.free.holdout;


	Do.tpr.weighted.threshold.holdout;


	Do.descens.threshold.free.holdout;


	Do.descens.threshold.holdout;


	Do.descens.weighted.threshold.free.holdout;


	Do.descens.tau.holdout;


	Do.descens.weighted.threshold.holdout;









NOTE: all the removed functions can be run opportunely by setting the input parameters of the new high-level function Do.TPR.DAG (for cross-validated experiments) and Do.TPR.DAG.holdout (for hold-out experiments);







Changes


	improve manual;









HEMDAG 1.1.1


New Features


	add DESCENS algorithm;


	add Heuristic Methods Max, And, Or (Obozinski et al., Genome Biology, 2008 – link [https://genomebiology.biomedcentral.com/articles/10.1186/gb-2008-9-s1-s6]);


	add tupla.matrix function;







Changes


	improve manual;


	add link to the GitHub repository HPOparser (note: from version 2.6.0 HPOparser was changed in obogaf::parser);


	add CITATION file;









HEMDAG 1.0.0


Package Genesis









          

      

      

    

  

  
    
    HEMDAG License
    

    

    
 
  

    
      
          
            
  
HEMDAG License


GNU GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.




Preamble

The GNU General Public License is a free, copyleft license for
software and other kinds of works.

The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom
to share and change all versions of a program–to make sure it remains
free software for all its users. We, the Free Software Foundation, use
the GNU General Public License for most of our software; it applies
also to any other work released this way by its authors. You can apply
it to your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you
have certain responsibilities if you distribute copies of the
software, or if you modify it: responsibilities to respect the freedom
of others.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.

Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains
that there is no warranty for this free software. For both users’ and
authors’ sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the
manufacturer can do so. This is fundamentally incompatible with the
aim of protecting users’ freedom to change the software. The
systematic pattern of such abuse occurs in the area of products for
individuals to use, which is precisely where it is most unacceptable.
Therefore, we have designed this version of the GPL to prohibit the
practice for those products. If such problems arise substantially in
other domains, we stand ready to extend this provision to those
domains in future versions of the GPL, as needed to protect the
freedom of users.

Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish
to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL
assures that patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and
modification follow.




TERMS AND CONDITIONS


0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds
of works, such as semiconductor masks.

“The Program” refers to any copyrightable work licensed under this
License. Each licensee is addressed as “you”. “Licensees” and
“recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of
an exact copy. The resulting work is called a “modified version” of
the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based
on the Program.

To “propagate” a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user
through a computer network, with no transfer of a copy, is not
conveying.

An interactive user interface displays “Appropriate Legal Notices” to
the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.




1. Source Code.

The “source code” for a work means the preferred form of the work for
making modifications to it. “Object code” means any non-source form of
a work.

A “Standard Interface” means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
“Major Component”, in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

The Corresponding Source need not include anything that users can
regenerate automatically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same
work.




2. Basic Permissions.

All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey,
without conditions so long as your license otherwise remains in force.
You may convey covered works to others for the sole purpose of having
them make modifications exclusively for you, or provide you with
facilities for running those works, provided that you comply with the
terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for
you must do so exclusively on your behalf, under your direction and
control, on terms that prohibit them from making any copies of your
copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the
conditions stated below. Sublicensing is not allowed; section 10 makes
it unnecessary.




3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such
circumvention is effected by exercising rights under this License with
respect to the covered work, and you disclaim any intention to limit
operation or modification of the work as a means of enforcing, against
the work’s users, your or third parties’ legal rights to forbid
circumvention of technological measures.




4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.




5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these
conditions:


	a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.


	b) The work must carry prominent notices stating that it is
released under this License and any conditions added under
section 7. This requirement modifies the requirement in section 4
to “keep intact all notices”.


	c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.


	d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.




A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
“aggregate” if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation’s users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.




6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of
sections 4 and 5, provided that you also convey the machine-readable
Corresponding Source under the terms of this License, in one of these
ways:


	a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.


	b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the Corresponding
Source from a network server at no charge.


	c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.


	d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.


	e) Convey the object code using peer-to-peer transmission,
provided you inform other peers where the object code and
Corresponding Source of the work are being offered to the general
public at no charge under subsection 6d.




A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any
tangible personal property which is normally used for personal,
family, or household purposes, or (2) anything designed or sold for
incorporation into a dwelling. In determining whether a product is a
consumer product, doubtful cases shall be resolved in favor of
coverage. For a particular product received by a particular user,
“normally used” refers to a typical or common use of that class of
product, regardless of the status of the particular user or of the way
in which the particular user actually uses, or expects or is expected
to use, the product. A product is a consumer product regardless of
whether the product has substantial commercial, industrial or
non-consumer uses, unless such uses represent the only significant
mode of use of the product.

“Installation Information” for a User Product means any methods,
procedures, authorization keys, or other information required to
install and execute modified versions of a covered work in that User
Product from a modified version of its Corresponding Source. The
information must suffice to ensure that the continued functioning of
the modified object code is in no case prevented or interfered with
solely because modification has been made.

If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or
updates for a work that has been modified or installed by the
recipient, or for the User Product in which it has been modified or
installed. Access to a network may be denied when the modification
itself materially and adversely affects the operation of the network
or violates the rules and protocols for communication across the
network.

Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.




7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders
of that material) supplement the terms of this License with terms:


	a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or


	b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or


	c) Prohibiting misrepresentation of the origin of that material,
or requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or


	d) Limiting the use for publicity purposes of names of licensors
or authors of the material; or


	e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or


	f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions
of it) with contractual assumptions of liability to the recipient,
for any liability that these contractual assumptions directly
impose on those licensors and authors.




All other non-permissive additional terms are considered “further
restrictions” within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions; the
above requirements apply either way.




8. Termination.

You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally,
unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to
60 days after the cessation.

Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.




9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run
a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.




10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party’s predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.




11. Patents.

A “contributor” is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned
or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, “control” includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor’s essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To “grant” such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. “Knowingly relying” means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

A patent license is “discriminatory” if it does not include within the
scope of its coverage, prohibits the exercise of, or is conditioned on
the non-exercise of one or more of the rights that are specifically
granted under this License. You may not convey a covered work if you
are a party to an arrangement with a third party that is in the
business of distributing software, under which you make payment to the
third party based on the extent of your activity of conveying the
work, and under which the third party grants, to any of the parties
who would receive the covered work from you, a discriminatory patent
license (a) in connection with copies of the covered work conveyed by
you (or copies made from those copies), or (b) primarily for and in
connection with specific products or compilations that contain the
covered work, unless you entered into that arrangement, or that patent
license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.




12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under
this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree to
terms that obligate you to collect a royalty for further conveying
from those to whom you convey the Program, the only way you could
satisfy both those terms and this License would be to refrain entirely
from conveying the Program.




13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.




14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions
of the GNU General Public License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies that a certain numbered version of the GNU General Public
License “or any later version” applies to it, you have the option of
following the terms and conditions either of that numbered version or
of any later version published by the Free Software Foundation. If the
Program does not specify a version number of the GNU General Public
License, you may choose any version ever published by the Free
Software Foundation.

If the Program specifies that a proxy can decide which future versions
of the GNU General Public License can be used, that proxy’s public
statement of acceptance of a version permanently authorizes you to
choose that version for the Program.

Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.




15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.




16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR
CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONS